

STANDARD MANOEUVRES SIMULATION OF A FISHING VESSEL

Krzysztof Patalong

Master Thesis

developed at "Dunărea de Jos" University, Galați in the framework of the **"EMSHIP"**

Erasmus Mundus Master Course in "Integrated Advanced Ship Design" Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC

Supervisor: Prof. Dr. Ing. Dan Obreja Reviewer: Prof. Dr. Ing. Marco Ferrando

Galați/Nantes February 2012

MAIN GOALS OF THE THESIS

Investigation of accuracy and reliability of existing initial design programs *(TRIBON, MPP1*) Validation of the university-developed simulation code for detailed design (*PHP code*) Analysis of the CFD techniques application in manoeuvring prediction *(ShipFLOW)*

MILESTONES OF THE THESIS

1. Design of the rudder geometry

2. Estimation of the hydrodynamic forces and moments generated on the rudder

- determination of the position and diameter of the rudder stock
- preliminary checking of the rudder cavitation

3. Estimation of the manoeuvring performance

- by means of the preliminary methods (based on regression formulas and linear hydrodynamic models)
- using simulation code based on fully non-linear hydrodynamic model

4. CFD simulation of forces and moments on the hull and rudder itself at different drift and rudder deflection angles

MATHEMATICAL MODELS

General form of differential equations of motions system (horizontal plane):

$$X = m \left(\frac{\partial u}{\partial t} - rv - r^2 x_G \right)$$
$$Y = m \left(\frac{\partial v}{\partial t} + ru + \frac{dr}{dt} x_G \right)$$
$$N = \frac{\partial r}{\partial t} I_{zz} + m x_G \left(\frac{\partial v}{\partial t} + ru \right)$$

Linear equations of motion (1st order terms only):

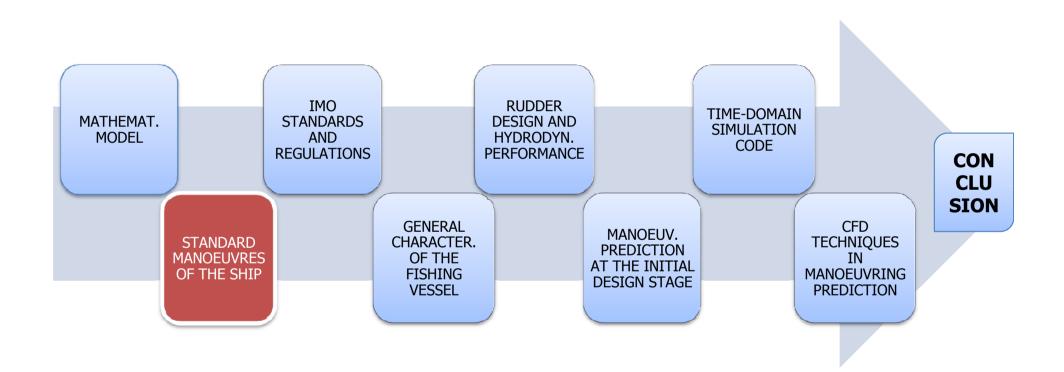
$$\begin{aligned} X_e + X_u u + X_{\dot{u}} \dot{u} &= m\dot{u} \\ Y_e + Y_v v + Y_r r + Y_{\dot{v}} \dot{v} + Y_{\dot{r}} \dot{r} &= m \left(\dot{v} + rU + \dot{r}x_G \right) \\ N_e + N_v v + N_r r + N_{\dot{v}} \dot{v} + N_{\dot{r}} \dot{r} &= I_{zz} \dot{r} + m x_G \left(\dot{v} + rU \right) \end{aligned}$$

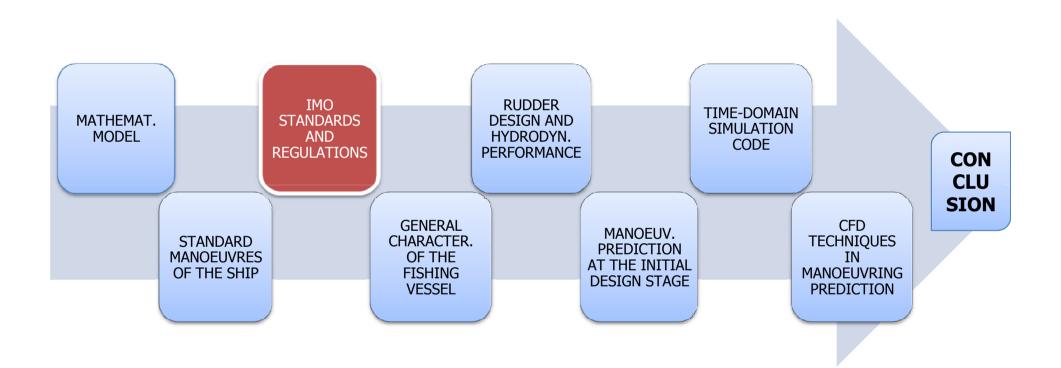
Non-linear model for ship's manoeuvrability (Abkowitz, 1964, Chislett and Strom-Tejsen, 1965):

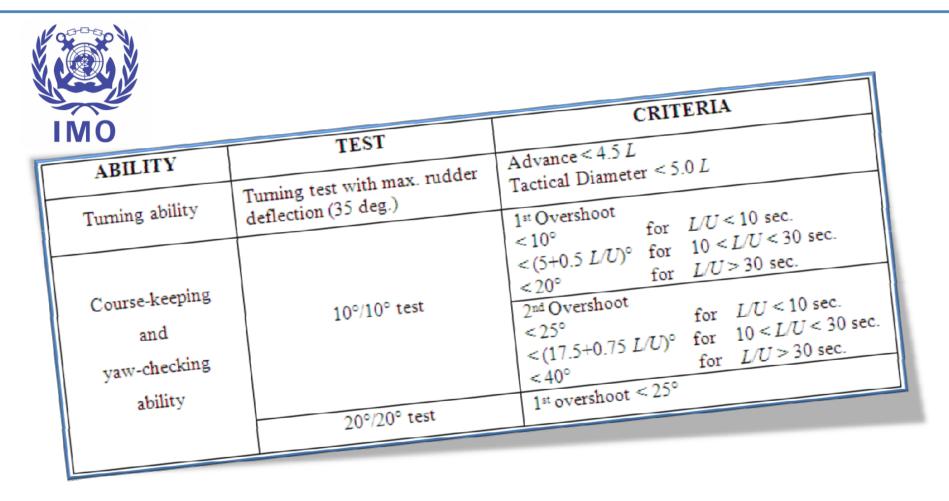
$$(m - X_{\dot{u}})\dot{u} = X_{u}u + X_{e} + f_{1}(u, v, r, \delta)$$

$$(m - Y_{\dot{v}})\dot{v} + (mx_{G} - Y_{\dot{r}})\dot{r} = Y_{v}v + (Y_{r} - mU)r + Y_{e} + f_{2}(u, v, r, \delta)$$

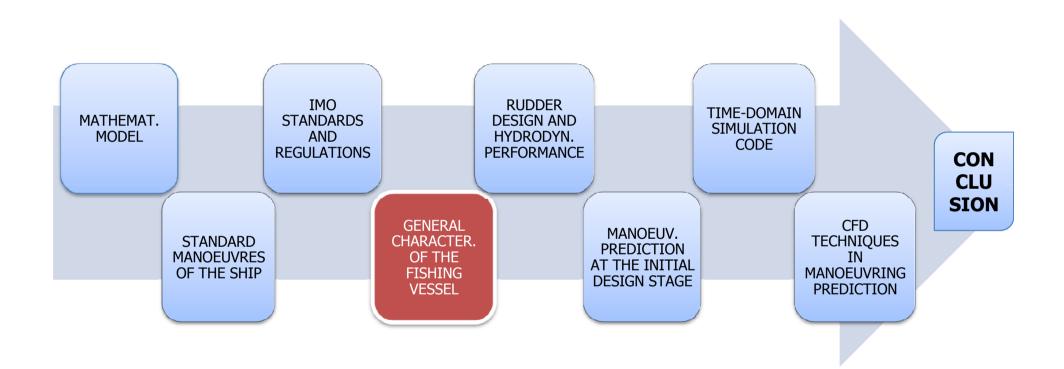
$$(mx_{G} - N_{\dot{v}})\dot{v} + (I_{zz} - N_{\dot{r}})\dot{r} = N_{v}v + (N_{r} - mx_{G}U)r + N_{e} + f_{3}(u, v, r, \delta)$$

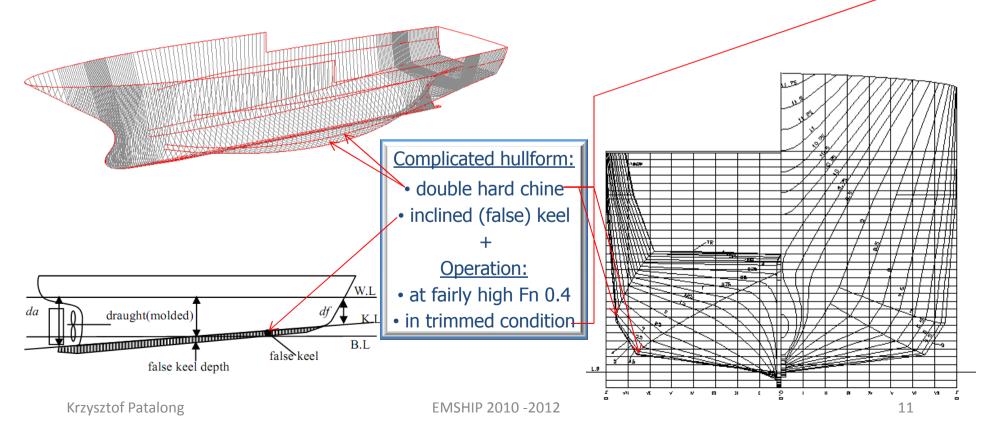

Krzysztof Patalong


STANDARD MANOEUVRES OF THE SHIP Manoeuvring Prediction Methods: Data-bases of manoeuvring gualities Transfe • Experimental model tests Phase II Mathematical models and numerical simulations Phase II **Standard Manoeuvres:** Advance(AD) Drift angle • Turning Circle Manoeuvre \implies turning ability and efficiency of the rudder Tactical diameter (TD) Phase I (β=0) +40 401 Rudder execute (y=0) Start of the rudder deflection Aproach course OVERSHOOT WIDTH OVERSHOOT +20 20 +10 DEGREES 1°1 Zig-Zag Manoeuvre \implies initial response to rudder action * - 1.0 Rate of turn Rate of turn -2.0 PERIOD - 3.0 PORT Right (stb) Right (stb) 12 Curve obtained SHIP LENGTHS OF TRAVEL, t from reversed TIME IN MINUTES spiral Rudder angle δ Rudder angle δ • Spiral Manoeuvre — controls-fixed straight line stability Left (port) Right (stb) Left (port) Right (stb) Left (port) Curve obtained from direct or Left port) reversed spiral



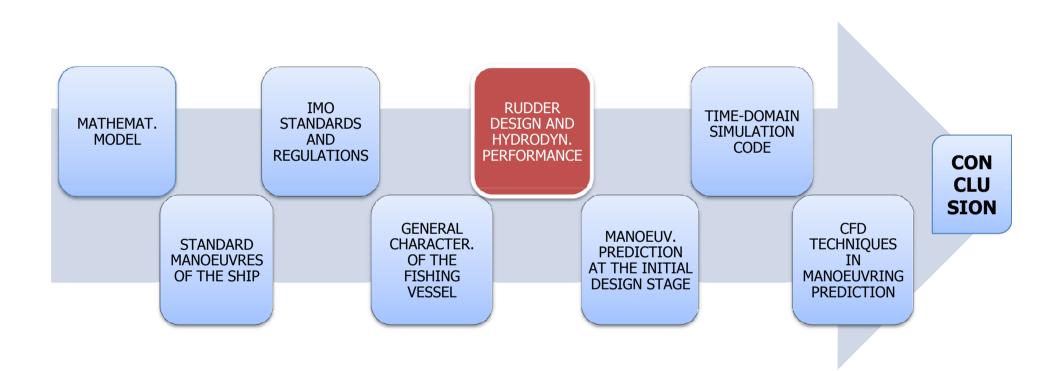
IMO CRITERIA FOR STANDARD MANOEUVRES





GENERAL CHARACTERISTICS OF THE FISHING VESSEL

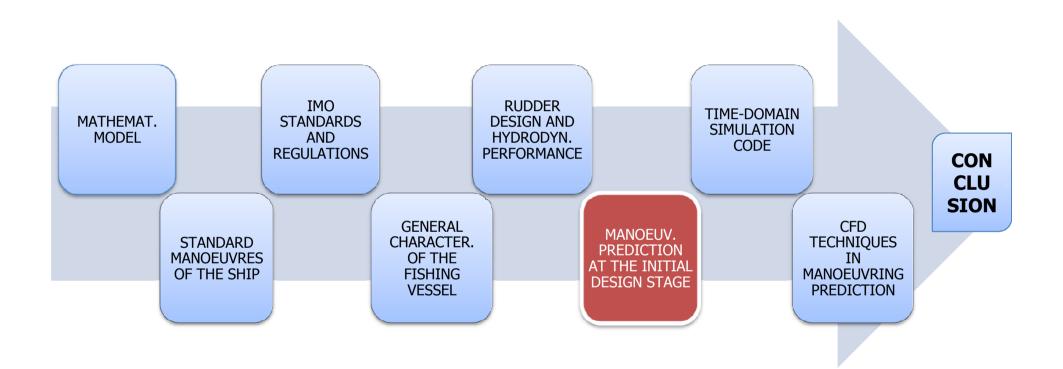
Length overall, L_{OA} [m]	32.7	Draft at fore perpendicular, T_F [m]	2.42	€
Length between perpendiculars, <i>L</i> [m] 29		Draft at aft perpendicular, T_A [m]	2.74	\leftarrow
Moulded breadth, <i>B</i> [m]	8.0	Block coefficient, C_B	0.574	
Volumetric displacement, $ abla$ [m ³]	296.0	Stock propeller diameter, D[m]	1.8	
Medium draft, T_M [m]	2.58	Ship speed, U [kn]	12.0	

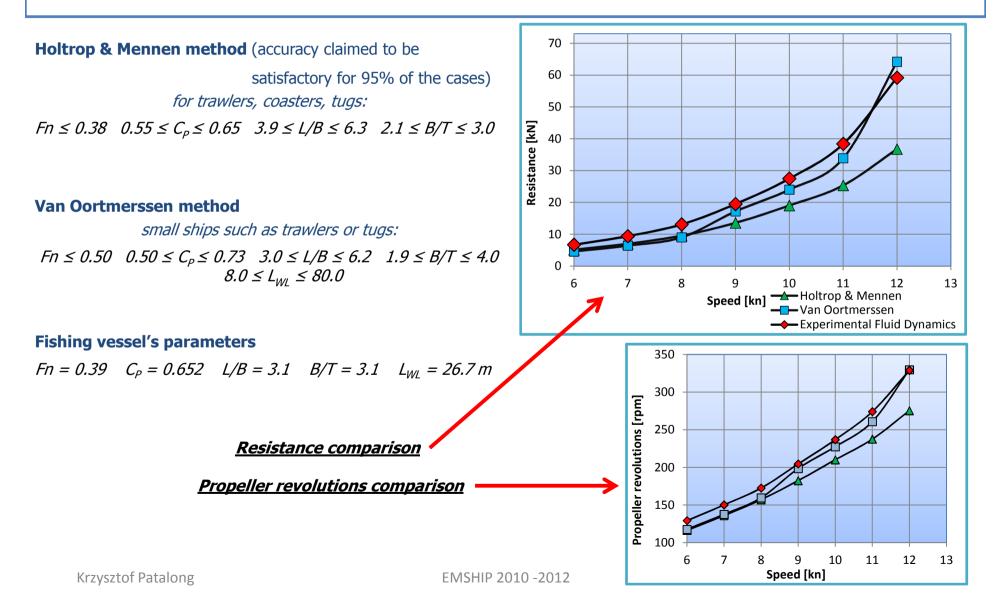


RUDDER DESIGN AND HYDRODYNAMIC PERFORMANCE

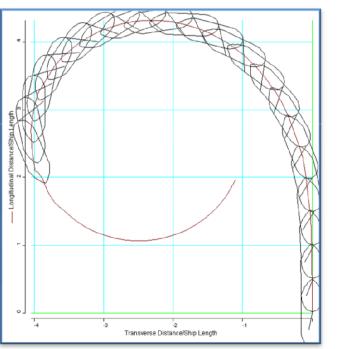
1 | 11

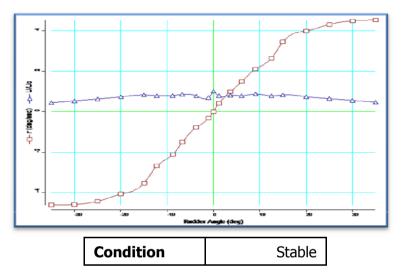
	<u>mmend. for mir</u>									
$\frac{T}{L \times T} = 0.0$	$1\left[1+50C_B^2\left(\frac{B}{L}\right)\right]$	= 0.027					$\langle \langle \rangle$	span [m]	\overline{b}	2.20
								chord [m]	\overline{c}	1.31
> Typical val	lues of aspect i	ratio:	2.20				F	area [m ²]	A_R	2.88
			T I				L	max. thickness [m]	t _{max}	0.24
TYPE C)F SHIP	Aspect ratio						aspect ratio [-]	λ	1.68
Ships with	Coaster ships	11.15						relative thickness [-]	$\overline{t}/\overline{c}$	0.18
single screw	Tugs	1.8						_		
single sciew	Fishing vessels	1.53.33								
BRIX METH	OD			-	- 1.31	-		VOITKOUNSK	Y MFTI	HOD
	Static	Dynamic				Hvdro	dvnamic cl	haracteristics	Value	ī
Flow angle, a [deg]	pressure [kPa]	pressure [kPa]	Total pressure [kPa]			-	from the t	he rudder stock	0.240	
13	112.320	-54.014	58.306			-		he rudder stock	-1.07()
22	112.320	-74.642	37.678				1.070	, 		
26	112.320	-86.624	25.696	Total hydrodynamic torque [kNm] 38.697		7				

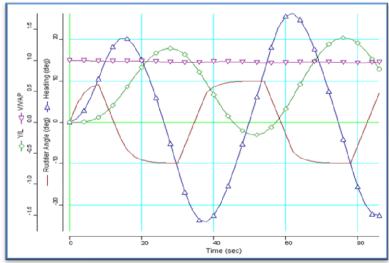

all +ve = no cavitation risk



VERIFICATION OF RESISTANCE ESTIMATION METHODS






MANOEUVRABILITY PERFORMANCE PREDICTION IN THE INITIAL DESIGN STAGE

Characteristics	Numerical result	IMO max. value
Advance [non-dim.]	4.24	4.50
Tactical diameter [non-dim.]	4.01	5.00

Characteristics	Numerical result	IMO max. value	
1 st overshoot angle [deg]	10.31	10.00	
2 nd overshoot angle [deg]	14.21	25.00	

Krzysztof Patalong

EMSHIP 2010 -2012

TRIBON: LIMITS OF APPLICABILITY AND COMPARISON WITH MPP1

Limits of applicability of **TRIBON**:

- resistance estimation with BSRA method in Manoeuvring Module (Methodical Series Experiments on Single-Screw Ocean-Going Merchant-Ship Forms with $0.55 < C_B < 0.85$)
- conventional rudders only in Manoeuvring Module (conventional, Becker or Schilling rudder types in other modules)
- based on mathematical models derived from regression analysis of manoeuvr. characteristics of merchant and naval vsls

SHIP	Min. value:	Max. value:	Fishing vsl	OK?
Block coefficient (C _B)	0.480	0.850	0.553	YES
Beam/Draft (B/T)	2.15	6.247	3.1	YES
Length/Beam (L/B)	4.0	8.0	3.1	NO
Length/Draft (L/T)	13.66	40.11	9.69	NO
LCG from midships/Length	-0.050	0.057	-0.023	YES
Draft	0.67*Prop. diam.	-	2.58	YES

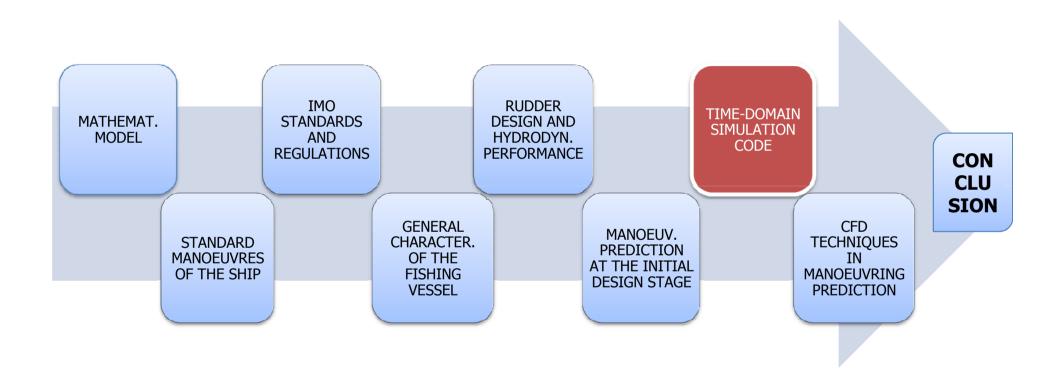
Parameter	% Difference
Advance	28.3 %
Transfer	13.0 %
Steady Turning Diam.	22.1 %
Tactical Diameter	16.5%
Steady Speed in Turn/App. Speed	33.3 %
Directional Stability (C > 0)	YES / NO

MPP1 (University of Michigan):computation based on LWL instead of LPP

 Lyster and Knights regression results for the estimation of turning circle characteristics

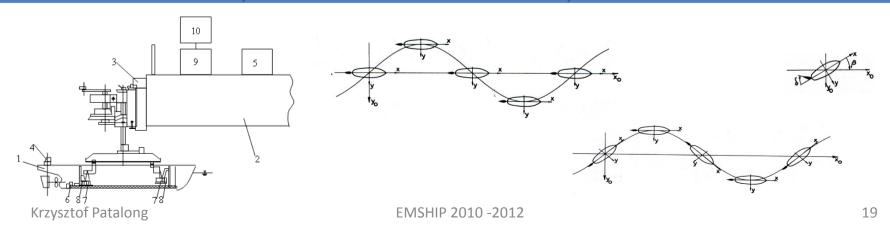
Clarke et al method for course stability,

turnability and controllability



TIME-DOMAIN SIMULATION CODE FOR STANDARD SHIP MANOEUVRES (1)

PHP numerical code:

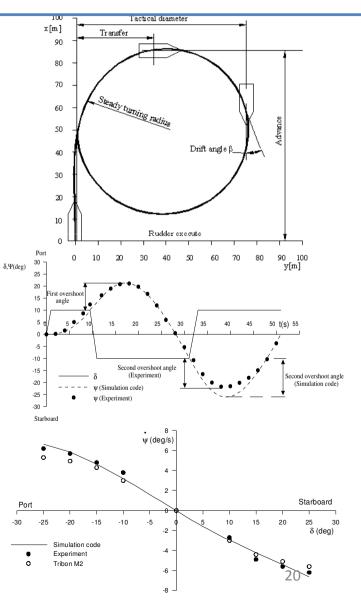

• Naval Architecture Faculty of the "Dunarea de Jos" University of Galati, Romania

Department of Naval Architecture, Ocean and Environmental Engineering of the University of Trieste, Italy

+

- Validated by the experimental tests
- Only few full nonlinear simulation models of merchant vessels e.g. VLCC tanker, ro-ro passenger, containership, ferry, etc. known in literature

PMM EXPERIMENTS >>> HYDRODYN. DERIVATIVES >>> INPUT IN THE SIMULATION CODE



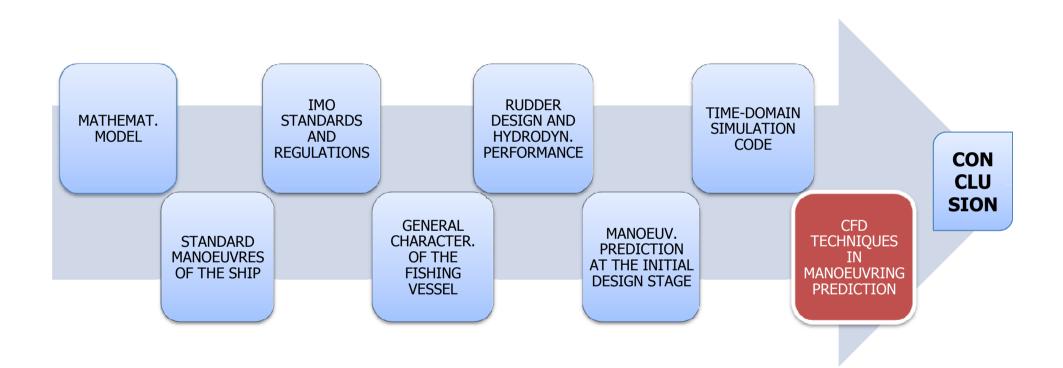
TIME-DOMAIN SIMULATION CODE FOR STANDARD SHIP MANOEUVRES (2)

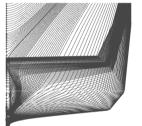
	-			
CHARACTERISTICS	SIMUL. CODE	TRIBON	MPP1	IMO
Advance/L [m]	3.44	4.24	3.04	4.5
Transfer/L [m]	1.39	1.84	1.60	-
Tactical diameter/L [m]	3.04	4.01	3.35	5.0
Steady diameter/L [m]	3.02	3.03	2.36	-
Steady drift angle [deg]	8.10	14.14	-	-
Speed/Approach speed	0.59	0.60	0.40	-
Stability criterion, C	0.000176	+ ve	- ve	-

CHARACTERISTICS	SIMUL. CODE	EXPER.	TRIBON	IMO
1 st overshoot angle [deg]	11.3	11.3	10.3	10.0
2 nd overshoot angle [deg]	16.0	11.9	14.2	25.0
Initial turning time [sec]	9.8	-	8.0	-
Time to 1 st max. heading	17.0	_	14.0	_
[sec]	17.0		14.0	
Reach time [sec]	28.0	-	26.0	-

CHARACTERISTIC	SIMUL. CODE	EXPER.	TRIBON	MPP1
Vessel condition	stable	stable	stable	unstable

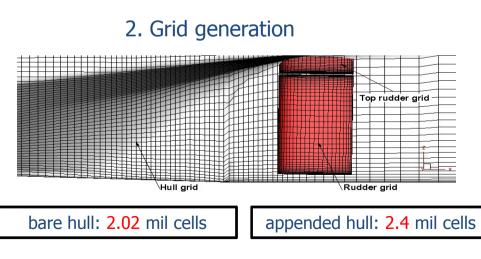
Krzysztof Patalong

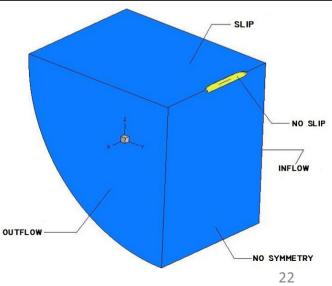

EMSHIP 2010 -2012



CFD TECHNIQUES IN MANOEUVRING PREDICTION

1. Offset file



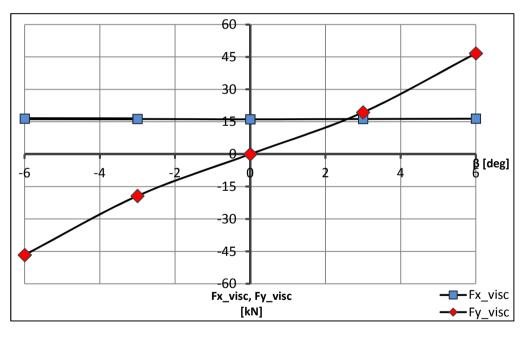


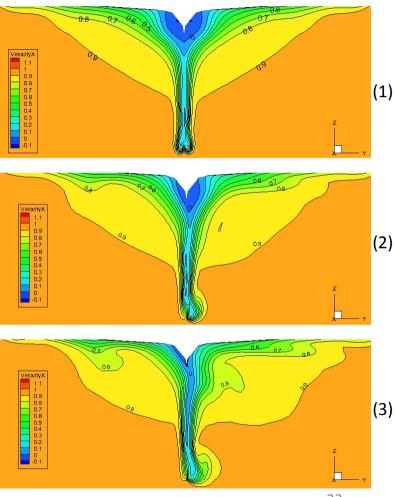
3. Boundary conditions

	No slip	Slip	Inflow	Outflow
u	$u_i = 0$	$u_i n_i = 0$ $\frac{\partial u_i}{\partial \xi_B} = 0$	$u_i = const.$	$\frac{\partial u_i}{\partial \xi_B} = 0$
p	$\frac{\partial p}{\partial \xi_B} = 0$	$\frac{\partial p}{\partial \xi_B} = 0$	$\frac{\partial p}{\partial \xi_{\scriptscriptstyle B}} = 0$	p = 0

Krzysztof Patalong

EMSHIP 2010 -2012

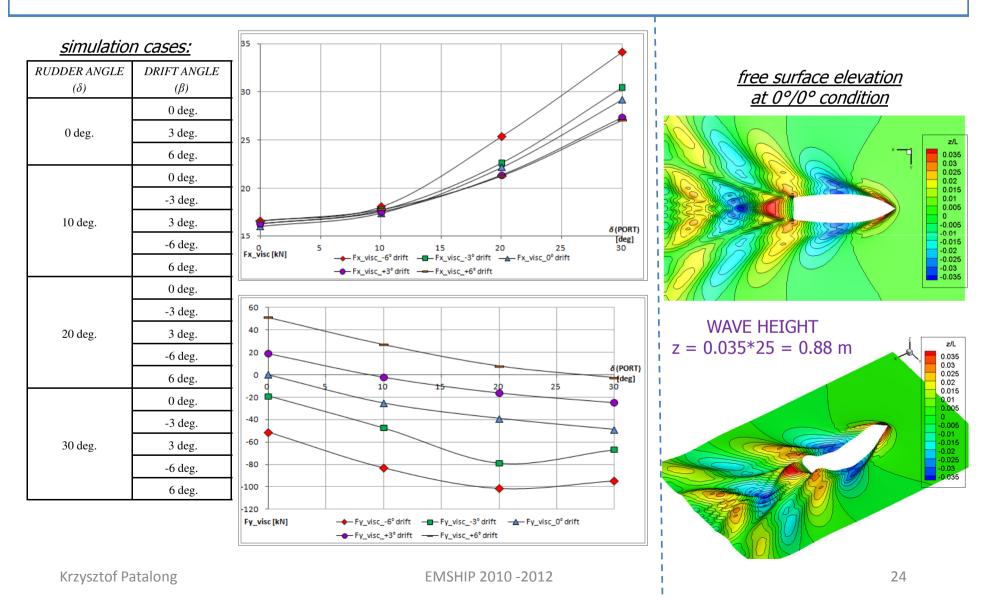



SIMULATIONS AT DIFFERENT DRIFT ANGLES

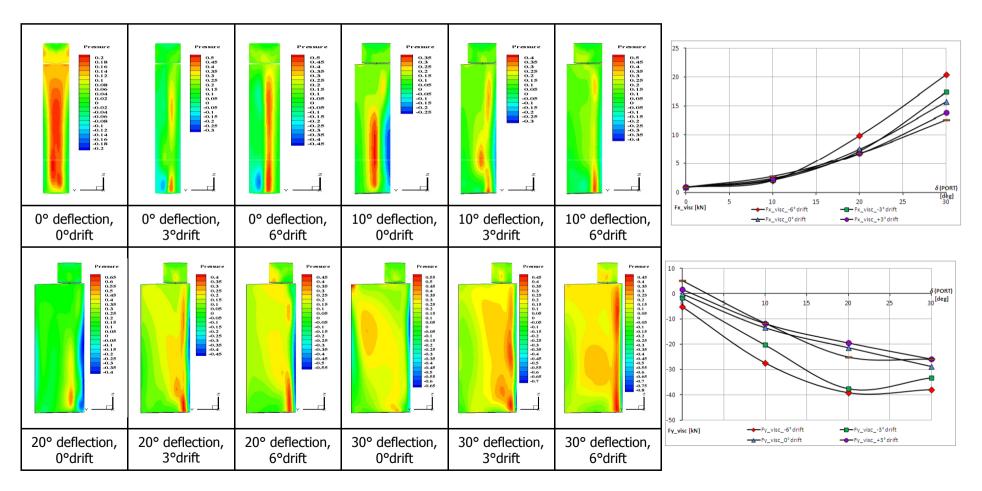
Three drift angles ($\beta = 0^{\circ}$, 3°, 6°) to determine the hydrodynamic forces acting on the bare hull

Existence of the free surface neglected (reduction of computational time)

(1) Velocity field around the hull at 0° drfit angle
(2) Velocity field around the hull at 3° drfit angle
(3) Velocity field around the hull at 6° drfit angle

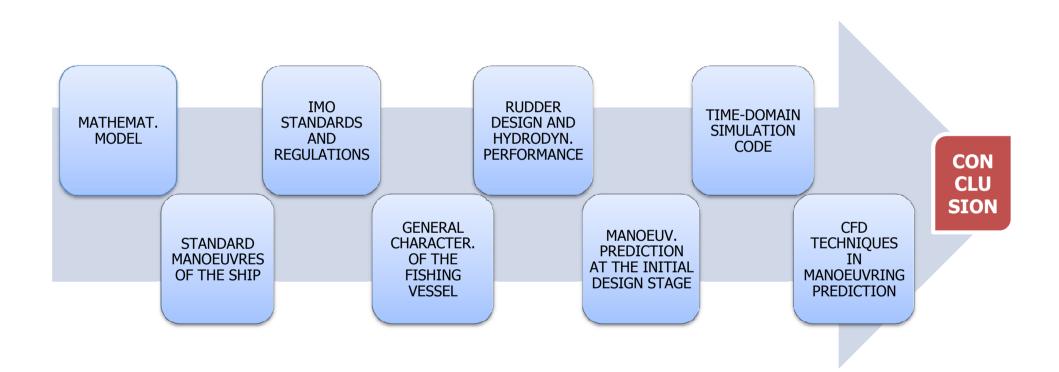


SIMULATIONS AT DIFFERENT DRIFT AND RUDDER ANGLES



VARIATION OF HYDRODYNAMIC PRESSURE ACTING ON THE RUDDER

A small "top" rudder in the upper part \implies simplification of the grid generation of the stern part



CONCLUSIONS

1. INITIAL DESIGN PROGRAMS

Q: Input data of main dimensions only, enough?A: No. Significant differences , especially for unsual hullforms.REMARK: more research needed

2. SIMULATION CODES BASED ON HYDRODYNAMIC DERIVATIVES

- Satisfactory agreement between numerical and experimental results
- Miscellaneous influence of derivatives on standard manoeuvres parameters
- Model tests needed to obtain the input data for the code

3. CFD TECHIQUES IN MANOEUVRING PREDICTION

- ✓ Determination of pressure and velocity spectra around the hull and rudder
- ✓ Base of further computation of hydrodynamic derivatives

THANK YOU

Centrale Nantes

Sail successfully into the future!!!